sg电子游戏-好莱坞明星_百家乐不锈钢_全讯网博客 (中国)·官方网站

首頁 > 講座預告 > 正文

講座預告

首頁 > 講座預告 > 正文

【韶風名家論壇】Convexity, Sparsity, Nullity and all that … in Machine Learning

發布時間 : 2017-03-28 00:00    點擊量:

分享:
報告時間
講座類型
報告題目:Convexity, Sparsity, Nullity and all that … in Machine Learning
主 講 人:Hamid Krim,北卡羅來州立大學教授,IEEE Fellow 
 
報告人簡介:
  Hamid Krim, 現任美國北卡羅來納州立大學電子與計算機工程系教授,研究興趣為統計信號和圖像分析、應用問題的數學建模。Krim教授曾擔任AT&T貝爾實驗室、麻省理工大學研究專家;曾獲貝爾實驗室杰出成績獎,美國國家科學基金會職業成就獎。目前,Krim是IEEE Transactions on Signal Processing的副主編IEEE Signal Processing Magazine的編委會成員,SPTM和Big Data Initiative的程序委會員會成員,2008年成為IEEE Fellow,被評為2015-2016年IEEE SP Society Distinguished Lecturer。
 
報告摘要:
  High dimensional data exhibit distinct properties compared to its low dimensional counterpart; this causes a common performance decrease and a formidable computational cost increase of traditional approaches. Novel methodologies are therefore needed to characterize data in high dimensional spaces.
  Considering the parsimonious degrees of freedom of high dimensional data compared to its dimensionality, we study the union-of-subspaces (UoS) model, as a generalization of thelinear subspace model. The UoS model preserves the simplicity of the linear subspace model, and enjoys the additional ability to address nonlinear data. We show a sufficient condition to use l1 minimization to reveal the underlying UoS structure, and further propose a bi-sparsity model (RoSure) as an effective algorithm, to recover the given data characterized by the UoS model from non-conforming errors/corruptions.
  As an interesting twist on the related problem of Dictionary Learning Problem, we discuss the sparse null space problem (SNS). Based on linear equality constraint, it first appeared in 1986 and hassince inspired results, such as sparse basis pursuit, we investigate its  relation to the analysis dictionary learning problem, and show that the SNS problem plays a central role, and may naturally be exploited  to solve dictionary learning problems.
  Substantiating examples are provided, and the application and performance of these approaches are demonstrated on a wide range of problems, such as face clustering and video segmentation.
 
主持人:歐陽建權教授,湘潭大學信息工程學院副院長
時 間:2017年3月30日下午2:00
地 點:工科樓北樓201
 
歡迎廣大師生參加!
 
湘潭大學信息工程學院
智能計算與信息處理教育部重點實驗室
2017年3月28日

關閉

友情鏈接:

地址:中國湖南湘潭  郵編:411105

版權所有?湘潭大學 (湘ICP備18021862號-2) 湘教QS3-200505-000059

湘公網安備 43030202001058號    

澳门百家乐官网赌技术| 百家乐最好的投注方法| bet365体育在线投注| 浩博国际娱乐城| 夜总会百家乐官网的玩法技巧和规则 | 网络百家乐内幕| 宝兴县| 百家乐官网开户| 百家乐技巧平注常赢法| 百家乐官网电投软件| 永利百家乐娱乐场| 力博娱乐| 百家乐浴盆博彩通排名| 久盛国际| 百家乐桌定制| 百家乐官网庄闲的比例| 试玩百家乐代理| 福安市| 百家乐投注法减注| 百家乐官网游戏官网| 百家乐官网棋牌游| 鸿博| 百家乐澳门赌| 万达百家乐官网娱乐城| bet365官方网址| 功夫百家乐官网的玩法技巧和规则| 合肥太阳城莱迪广场| 百家乐官网娱乐分析软件v| 百家乐官网娱乐城7| 大发888娱乐官方| 58百家乐官网的玩法技巧和规则| 大发888官方爱好| 澳门百家乐群官网| 赌王百家乐官网的玩法技巧和规则 | 玩百家乐犯法| 现场百家乐官网的玩法技巧和规则| 天博国际娱乐城| 百家乐下注的规律| 皇冠在线代理| 利博百家乐官网的玩法技巧和规则| 洪雅县|